High Level ab Initio Energies and Structures for the Rotamers of 1,3-Butadiene

David Feller ${ }^{*, \dagger}$ and Norman C. Craig ${ }^{\ddagger}$
Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, and Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074

Received: October 29, 2008; Revised Manuscript Received: December 21, 2008

Abstract

High level ab initio calculations, utilizing coupled cluster theory with quasi-perturbative triple excitations and augmented quadruple ζ level basis sets, have been used to determine the structures and relative energies of the four stationary points on the 1,3-butadiene torsional potential curve. Corrections were applied in order to minimize the residual basis set error, as well as account for core/valence correlation and scalar relativistic effects. Higher order correlation recovery was also included to improve our estimate of the relative energies. The transition state separating the trans and gauche rotamers lies $26.8 \mathrm{~kJ} / \mathrm{mol}$ above the trans global minimum. The gauche rotamer lies $12.6 \mathrm{~kJ} / \mathrm{mol}$ above the trans rotamer and the s-cis form is a transition state 2.0 $\mathrm{kJ} / \mathrm{mol}$ higher than the gauche rotamer (excluding zero point energies).

Introduction

The lowest energy form of 1,3-butadiene (BDE) possesses a planar s-trans conformation with $\mathrm{C}_{2 \mathrm{~h}}$ symmetry. ${ }^{1-3}$ Although a number of investigations of the potential surface corresponding to rotation about the central $\mathrm{C}-\mathrm{C}$ bond have appeared in the literature, there remain open questions pertaining to the higher energy rotamers. Figure 1, which depicts the potential energy function as determined in this study, serves as a guide to the review of the earlier literature on the rotamers of butadiene.

Very early work by Radom and Pople, based on restricted Hartree-Fock (RHF) calculations with the minimal STO-3G basis set, identified an s-cis (planar) conformer with $C_{2 v}$ symmetry as a minimum. It was reported to lie $8.6 \mathrm{~kJ} / \mathrm{mol}(2.1$ $\mathrm{kcal} / \mathrm{mol}$) higher in energy than the trans structure. ${ }^{4}$ Unfortunately, due to the limitations of the computer hardware available at the time, only the CCC angles could be optimized. Slightly different geometries led to estimates of the cis/trans energy difference as high as $23.8 \mathrm{~kJ} / \mathrm{mol}$. Subsequent work by Skaarup et al. found gauche enantiomers with C_{2} symmetry that were $2.5 \mathrm{~kJ} / \mathrm{mol}(0.6 \mathrm{kcal} / \mathrm{mol})$ lower in energy than the cis form, but once again only partial RHF geometry optimizations were possible. ${ }^{5}$ The authors cautioned that such a small energy difference rendered their findings less than conclusive. De Maré found similar results with partially constrained RHF optimizations that included d polarization functions on the carbon atoms. ${ }^{6}$ Schaefer and co-workers compared the cis and gauche conformers at the RHF and configuration interaction singles and doubles (CISD) levels of theory with basis sets of double- ζ (DZ) and double- ζ plus polarization (DZP) quality. ${ }^{7}$ No constraints were imposed on the RHF geometry optimizations, which yielded a CCCC dihedral angle (τ) for the gauche conformer in the 33 38° range. (Throughout this paper we have adopted the convention that the s-trans rotamer corresponds to a torsion angle of 180° and the s-cis form corresponds to 0.0°.) The cis barrier height at their best level of theory (CISD/DZP) was reported to be $3.4 \mathrm{~kJ} / \mathrm{mol}(0.82 \mathrm{kcal} / \mathrm{mol})$.
In 1985, Feller and Davidson re-examined the cis-gauche portion of the rotational potential curve with a 10 -orbital/10-

[^0]

Figure 1. Vibrationless internal rotational potential function for butadiene based on the best available level of theory, as discussed in the text.
electron complete active space self-consistent field (CASSCF) wave function with an unpolarized split valence basis set. ${ }^{8}$ The active space consisted of the three $\mathrm{C}-\mathrm{C} \sigma$ bonds, the two occupied π bonds and the five corresponding antibonding orbitals. At this level of theory, the gauche minimum disappeared, leaving the cis form as a minimum. When additional correlation recovery was introduced via multireference, singles and doubles CI (MR SD-CI) calculations and the basis set increased to the DZP level, the gauche minimum reappeared approximately $0.8-2.6 \mathrm{~kJ} / \mathrm{mol}$ lower in energy than the s-cis conformer. Because it proved impossible to reoptimize the geometry at the highest level of theory or to gauge the impact of larger basis sets, the authors cautioned that the relative energies could easily be reversed with more sophisticated calculations.

In 1990, Wiberg and Rosenberg carried out third order M ϕ ller-Plesset perturbation theory (MP3) energy evaluations
on the s-cis and gauche rotamers with the $6-311+\mathrm{G}^{* *}$ basis set using second order (MP2) optimized geometries. ${ }^{9}$ They found the gauche form to be energetically favored by $4.1 \mathrm{~kJ} / \mathrm{mol}(0.98$ $\mathrm{kcal} / \mathrm{mol})$. Similar conclusions were reached a year later by Guo and Karlpus in their MP2 study. ${ }^{10}$

The 1992 experimental work of Engeln et al. was the culmination of several investigations of the potential function of BDE. ${ }^{11-13}$ They drew on observations of progressions of overtone transitions for the torsional modes of the trans and gauche rotamers in the gas-phase Raman spectrum to propose a complete potential function for internal rotation. ${ }^{13}$

More recently, Murcko et al. ${ }^{14}$ studied the $\mathrm{C}-\mathrm{C}$ rotational barriers in three hydrocarbons (butane, 1-butene and 1,3butadiene) with the $\mathrm{G} 2^{15}$ and CBS-Q ${ }^{16}$ theoretical composite methods. The first of these utilized MP2(full)/6-31G(d) optimized geometries, while the second used geometries obtained from frozen core (FC) MP2/6-31G \dagger calculations. Both the G2 and CBS-Q approaches include empirically adjusted parameters. G2 predicted a trans-to-gauche zero-point-inclusive transition state (TS) that is $23.7 \mathrm{~kJ} / \mathrm{mol}(5.7 \mathrm{kcal} / \mathrm{mol})$ higher than the trans conformer and a cis transition state barrier of $2.2 \mathrm{~kJ} / \mathrm{mol}$ ($0.5 \mathrm{kcal} / \mathrm{mol}$) relative to the gauche form. CBS-Q predicted a slightly higher energy transition state near $\tau=100^{\circ}$ of 25.2 $\mathrm{kJ} / \mathrm{mol}(6.0 \mathrm{kcal} / \mathrm{mol})$ and a cis transition state that was essentially degenerate with the gauche conformer.

Sancho-Garcia et al. studied the butadiene torsional potential with a variety of correlated methods, ranging from MP2 through coupled cluster theory with singles and doubles (CCSD) and with quasi-perturbative triples $(\operatorname{CCSD}(\mathrm{T})) .{ }^{17}$ Basis sets were chosen from the correlation consistent (cc-pVnZ) family of Dunning, ${ }^{18}$ but the coupled cluster calculations were limited to the small cc-pVDZ basis. Values for the zero-point-exclusive barrier height near $\tau=100^{\circ}$ ranged from 24.0 to $27.3 \mathrm{~kJ} / \mathrm{mol}$ ($5.7-6.5 \mathrm{kcal} / \mathrm{mol}$), while the cis barrier was approximately 1.6 $\mathrm{kJ} / \mathrm{mol}(0.4 \mathrm{kcal} / \mathrm{mol})$ above the energy of the gauche rotamer.
The most recent high level theoretical study of the butadiene torsional potential was reported by Karpfen and Parasuk. ${ }^{19}$ They carried out MP2 and density functional theory (DFT) geometry optimizations with basis sets as large as aug-cc-pVTZ and ccpVQZ. Still larger basis set MP2 calculations (aug-cc-pVQZ and cc-pV5Z) were performed at the cc-pVQZ geometries. Higher level correlation corrections were obtained from frozen core $\operatorname{CCSD}(\mathrm{T})$ calculations with the cc-pVTZ basis set. Their best values combined MP2/cc-pV5Z and CCSD(T)/cc-pVTZ relative energies. This procedure yielded energies for the gauche rotamer and the trans-gauche transition state in acceptable agreement with those derived from the potential function proposed by Engeln et al. ${ }^{13}$ However, Karpfen and Parasuk's zero-point-exclusive barrier of $2.4 \mathrm{~kJ} / \mathrm{mol}(0.57 \mathrm{kcal} / \mathrm{mol})$ for the s-cis transition state is only about half as large as the value derived from the potential function of Engeln et al. These findings cast doubt on the assignments for the gauche rotamer in the gas phase Raman spectrum and support the ambiguity between gauche and cis rotamers in the interpretation of the matrix isolation spectra. They also help to explain the difficulties encountered in attempts to observe microwave lines of the gauche rotamer. Unsuccessful searches have been made for microwave lines corresponding to the gauche rotamer of BDE. ${ }^{20,21}$ A summary of selected theoretical literature values for the s-cis barrier height is presented in Table 1.

DeMaré et al. investigated the rotational structure in an infrared band near $750 \mathrm{~cm}^{-1}$ at moderate resolution and attributed this band to the gauche rotamer. ${ }^{22}$ However, a recent re-examination of this band with much higher resolution showed

TABLE 1: Selected Theoretical Literature Values for the Zero Point Exclusive gauche-to-cis Barrier Height (kJ/mol).

year	barrier	method	reference
1976	2.5	RHF/Gaussian lobe	Skaarup et al. ${ }^{5}$
1984	3.4	CISD/DZP	Breulet et al. ${ }^{7}$
1985	0.8-2.6 ${ }^{\text {a }}$	MR SD-CI/DZP	Feller and Davidson ${ }^{8}$
1990	4.1	MP3/6-311+G**	Wiberg and Rosenberg ${ }^{9}$
1991	2.1-4.2	RHF-MP3/6-31G*	Guo and Karplus ${ }^{10}$
1996	$1.5-2.8^{\text {b }}$	CBS-Q and G2	Murcko et al. ${ }^{14}$
2001	1.6	$\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVDZ}$	Sancho-Garcia et al. ${ }^{17}$
2004	2.4	$\begin{aligned} & \text { CCSD(T)/cc-pVTZ+MP2/ } \\ & \text { cc-pV5Z } \end{aligned}$	Karpfen and Parasuk ${ }^{19}$

${ }^{a}$ The smaller value resulted from the inclusion of an approximate correction for unlinked quadruple excitations. ${ }^{56}{ }^{b}$ Murcko et al. reported G2 $(2.2 \mathrm{~kJ} / \mathrm{mol})$ and CBS-Q $(0.0 \mathrm{~kJ} / \mathrm{mol})$ barriers that included the zero point vibrational energies. For the sake of consistency in this Table, the ZPEs have been removed.
the band comes from a difference band of the trans rotamer. ${ }^{23}$ In addition, no subbands with rotational structure of the gauche rotamer, which is only 5% or less abundant at room temperature, ${ }^{24}$ could be identified in the high-resolution infrared spectrum. ${ }^{23}$ The estimate of 5% for the gauche content of butadiene at room temperature appears to be an overestimate. Saltiel et al. ${ }^{24}$ report $\Delta_{\mathrm{r}} S^{\circ}{ }_{320}=16.6 \mathrm{~J} / \mathrm{K} \mathrm{mol}$ for gauche - trans. This $\Delta_{\mathrm{r}} S^{\circ}$ is too large. From Gaussian 03 (G03) ${ }^{25}$ B3LYP ${ }^{26,27 /}$ aug-cc-pVTZ calculations, $\Delta_{\mathrm{r}} S^{\circ}{ }_{298}=8.2 \mathrm{~J} / \mathrm{K} \mathrm{mol}$, including an $R \ln 2$ contribution for the statistical weight of two gauche rotamers. With the $\Delta_{\mathrm{r}} H^{\circ}{ }_{320}$ value from Saltiel et al. and the new $\Delta_{\mathrm{r}} S^{\circ}$ value, the gauche content at room temperature is estimated to be only 2%. The large value for $\Delta_{r} S^{\circ}{ }_{320}$ probably reflects uncertainty in determining different absorption coefficients for the two rotamers. ${ }^{24}$

A number of matrix-isolation studies with infrared and Raman spectroscopy have been made of BDE, heated to high temperature in the incident beam or photolyzed in situ to increase the gauche/cis content. These experiments have recently been reviewed. ${ }^{23,28-34}$ Although evidence for a gauche or cis rotamer is unmistakable in these spectra, uncertainty exists about the conformer present. The conformer could be gauche or cis or a floppy gauche rotamer sampling the two enantiomers. ${ }^{33}$

We have recently reported high level ab initio structures for the s-trans and the 90°-twisted rotamers of BDE. The structure found for the trans rotamer of BDE agrees within $0.001 \AA$ with the semiexperimental equilibrium structure recently reported. ${ }^{35}$ In the present work, we apply the same theoretical approach to the trans-gauche transition state, the gauche rotamer, and the gauche-gauche transition state. In addition, new predictions of the frequencies and intensities for the gauche rotamer are supplied.

Theoretical Section

The present approach closely follows the procedure used in our previous work on butadiene, ${ }^{35}$ as well as the approach used in a recent survey of over 100 small molecules that found mean absolute deviations of $0.003 \AA$ (AH bond lengths, 49 comparisons), $0.001 \AA$ (AB bond lengths, 79 comparisons) and 0.2° (bond angles, 30 comparisons). ${ }^{36}$ Although the survey just mentioned sometimes employed basis sets as large as aug-cc$\mathrm{pV7Z}$, in the context of the present work the first step is a series of three $\operatorname{CCSD}(\mathrm{T})(\mathrm{FC})$ geometry optimizations with the aug-cc-pVnZ, $n=\mathrm{D}, \mathrm{T}, \mathrm{Q}$ sequence of basis sets. ${ }^{18,37}$ Although by current standards the aug-cc-pVQZ basis set is at the practical limit of what can be used in coupled cluster geometry optimiza-
tions, the resulting structures still contain a small but nonnegligible, residual basis set truncation error. We further reduce this error by performing a three-parameter exponential extrapolation of the aug-cc-pVnZ optimized bond lengths in order to estimate the complete basis set (CBS) limit. In the case of the trans conformer, the CBS bond length extrapolation shortened the $\mathrm{C}=\mathrm{C}$ bond by $0.0007 \AA$ and the $\mathrm{C}-\mathrm{C}$ bond by $0.0004 \AA$. With the aug-cc-pVQZ basis set, the bond angles were already converged to an accuracy of $\pm 0.1^{\circ}$, so no extrapolation was performed.
The second step in our procedure is a series of six $\operatorname{CCSD}(\mathrm{T})$ geometry optimizations intended to recover the core/valence correlation correction. These calculations made use of the correlation consistent weighted core/valence (CV) basis sets, cc-pwCVnZ, $n=\mathrm{D}, \mathrm{T}, \mathrm{Q},{ }^{38}$ and were performed in matched pairs. One calculation employed the normal frozen core approximation in which the carbon (1s) electrons were excluded from the correlation treatment, while the other calculation in the pair involved all electrons. The CV correction was also extrapolated to the CBS limit.
The third step involves an additional pair of $\operatorname{CCSD}(\mathrm{T})$ geometry optimizations intended to account for scalar relativistic (SR) effects. The SR correction is defined as the difference between a conventional $\operatorname{CCSD}(\mathrm{T})(\mathrm{FC}) / \mathrm{cc}-\mathrm{pVTZ}$ optimized structure and a corresponding structure optimized with a second order Douglas-Kroll-Hess (DKH) CCSD(T)(FC) calculation ${ }^{39,40}$ using the cc-pVTZ_DK basis set. ${ }^{41}$ For first and second row compounds, the scalar relativistic correction is generally an order of magnitude smaller than the CV correction, with the former typically falling into the $0.0001-0.0003 \AA$ range. However, for third row or heavier elements the scalar relativistic correction may exceed $0.002 \AA$.

Zero point vibrational energies (ZPEs), based on harmonic frequencies, were obtained at the $\operatorname{CCSD}(\mathrm{T})(\mathrm{FC}) /$ aug-cc-pVDZ level for the stationary points on the torsional potential.

All $\operatorname{CCSD}(\mathrm{T})$ calculations in the present work were performed with MOLPRO 2006.1.42 Geometries were optimized using MOLPRO's default convergence criterion, i.e. the maximum component of the gradient is less than 3×10^{-3} au and the maximum energy change is less than $1 \mu E_{\mathrm{h}}$.

Although $\operatorname{CCSD}(\mathrm{T})$ is one of the highest levels of theory that can routinely be applied in structural determinations of small (i.e., ≤ 24 atoms) molecules, there is a growing body of evidence about the impact of correlation recovery beyond $\operatorname{CCSD}(\mathrm{T})$ on bond lengths and angles. ${ }^{43-46}$ For example, in a recent study of such effects carried out with the $\operatorname{CCSDT}(\mathrm{Q})$ and CCSDTQ methods, increases in $\mathrm{C}-\mathrm{C}$ bond lengths on the order of $0.0002 \AA\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ to $0.0011 \AA\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ were reported. ${ }^{36}$ Unfortunately, methods incorporating quadruple excitations are currently prohibitively expensive for optimizing the geometries of all stationary points on the BDE torsional potential. Nevertheless, we were able to perform single point $\operatorname{CCSDT}(\mathrm{Q})$ calculations at the stationary points in order to improve our estimate of their relative energies. We were also able to carry out full CCSDT(Q) geometry optimization on the s-trans conformer. All CCSDT(Q) calculations were performed with the MRCC program of Kállay and co-workers ${ }^{47,48}$ interfaced to MOLPRO. Finally, the difference between $\operatorname{CCSDT}(\mathrm{Q})$ and full configuration interaction (FCI), which represents the exact solution of the Schrödinger equation for a fixed basis set, was estimated with a continued fraction approximant based on CCSD, CCSDT, and CCSDT(Q) energies. ${ }^{36,49}$

TABLE 2: Energies ${ }^{a}$ and Torsion Angles for Rotamers of Butadiene

	theoretical					$\frac{\text { experimental }}{\text { Engeln et al. }{ }^{d}}$	
	present work ${ }^{\text {b }}$			Karpfen	Parasuk ${ }^{\text {c }}$		
	$\begin{aligned} & \text { w/o } \\ & \text { ZPE } \end{aligned}$	$\text { w } \mathrm{ZPE}^{e}$	τ / deg	w/o ZPE	$\tau /$ deg	energy	$\tau /$ deg
trans	0.0	0.0	180.0	0.0	180	0	180
T.S.	26.8	24.0	101.7	25.6	101	24.8	103
90°	25.8	23.1	90.0	$24.5{ }^{f}$	90	23.1	90
gauche	12.6	12.2	35.5	12.1	35	12.0	38
cis (TS)	14.6	13.5	0.0	14.5	0	16.5	0

${ }^{a}$ Relative to the trans rotamer in $\mathrm{kJ} / \mathrm{mol}$. ${ }^{b}$ Based on $\operatorname{CCSD}(\mathrm{T})(\mathrm{FC}) / \mathrm{CBS}+\operatorname{CCSD}(\mathrm{T})(\mathrm{CV}) / \mathrm{cc}-\mathrm{pw} \mathrm{CVQZ}+\mathrm{SR}$ correction $+\operatorname{CCSDT}(\mathrm{Q})(\mathrm{FC}) / \mathrm{cc}-\mathrm{pVDZ}$ correction. ${ }^{c}$ Reference 19 based on MP2(FC)/cc-pV5Z $+\operatorname{CCSD}(\mathrm{T})(\mathrm{FC}) / \mathrm{cc}-\mathrm{pVTZ}$ values. ${ }^{d}$ Reference 13. We evaluated the reported potential function at various angles to obtain the energies and angles reported here, which are supplementary to the angles of Engeln et al. Only the parameters of the potential function and a graph were reported in the paper. ${ }^{e}$ Including $\operatorname{CCSD}(\mathrm{T})(\mathrm{FC}) /$ aug-cc-pVDZ zero point vibrational energies. ${ }^{f}$ Karpfen and Parasuk did not report an explicit value for τ $=90^{\circ}$. This value was derived from their potential function.

Results and Discussion

Table 2 compares our best relative energies (with and without zero point vibrational contributions) for the various rotamers with the theoretical results of Karpfen and Parasuk ${ }^{19}$ and the experimental values derived from the potential function of Engeln et al. ${ }^{13}$ We note here that the convention adopted in this paper for the torsion angle differs from the convention used by Engeln et al., who assigned the trans conformation an angle of 0°. The zero of energy in Table 2 is taken to be the trans rotamer global minimum. The 0°-, 90°-, and 102°-rotamers all possessed a single imaginary frequency. The gradient norm at the first and last of these was $\sim 10^{-4} E_{\mathrm{h}} / a_{0}$ and the gradient norm at the 90° structure was $4 \times 10^{-4} E_{\mathrm{h}} / a_{0}$, indicating that it is a near transition state. Figure 1 is a schematic potential function derived from the best available data. Inclusion of the CCSDT(Q) correction increases the 102° barrier height by $0.34 \mathrm{~kJ} / \mathrm{mol}$ and stabilizes the gauche minimum by $0.12 \mathrm{~kJ} / \mathrm{mol}$, both relative to the trans conformer.

The present energies and torsion angles are in good agreement with those of Karpfen and Parasuk, who used a slightly lower level of theory, as previously discussed. ${ }^{19}$ The energy difference between the gauche and the trans rotamers in the present work ($12.2 \mathrm{~kJ} / \mathrm{mol}$, including the ZPE) is nearly the same as the experimental value of $\Delta H^{\circ}{ }_{320}$ of $12.0 \mathrm{~kJ} / \mathrm{mol} .{ }^{24}$ The cis barrier height of $2.0 \mathrm{~kJ} / \mathrm{mol}$ (excluding the ZPE) is slightly smaller than the $2.4 \mathrm{~kJ} / \mathrm{mol}$ value reported by Karpfen and Parasuk. Nonetheless, the two theoretical values are sufficiently close to suggest that the corresponding experimental value $(4.5 \mathrm{~kJ} / \mathrm{mol})^{13}$ is likely too large.

Table 3 lists the optimized internal coordinates (bond lengths and bond angles) found for the various rotamers, while the atomic numbering convention is shown in Figure 2 for the trans rotamer. An equivalent numbering scheme was used with the other rotamers. Due to the excellent agreement between the theoretical and semiexperimental structures for the trans rotamer (bond lengths within $\pm 0.001 \AA$, bond angles within $\pm 0.2^{\circ}$), ${ }^{35}$ we expect a similar level of accuracy in the theoretical predictions for the other three structures.

As reported previously, the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bond lengths in the 90°-twisted rotamer differ significantly from those in the trans rotamer, indicating localized bonds with negligible

TABLE 3: Internal Coordinates for Rotamers of Butadiene ${ }^{a}$

parameter	trans	$102^{\circ}(\mathrm{TS})^{b}$	$90^{\circ} \mathrm{C}$	gauche	cis (TS) ${ }^{\text {b }}$
$r(\mathrm{C} 1 \mathrm{C} 2) / \AA$	1.3377 (1.3389) ${ }^{\text {d }}$	1.3327	1.3329	1.3362	1.3371
$r(\mathrm{C} 2 \mathrm{C} 3) / \AA$	1.4548 (1.4549)	1.4824	1.4818	1.4682	1.4696
$r(\mathrm{H} 1 \mathrm{Cl}) / \AA{ }^{\text {a }}$	1.0823 (1.0825)	1.0820	1.0819	1.0821	1.0819
$r(\mathrm{H} 2 \mathrm{C} 1) / \AA{ }^{\text {a }}$	1.0799 (1.0799)	1.0807	1.0808	1.0802	1.0799
$r(\mathrm{H} 3 \mathrm{C} 2) / \AA$	1.0846 (1.0848)	1.0850	1.0852	1.0841	1.0833
$\alpha(\mathrm{C1C2C3}) / \mathrm{deg}$	123.5 (123.5)	123.8	123.8	124.4	126.3
$\alpha(\mathrm{H} 1 \mathrm{C} 1 \mathrm{C} 2) / \mathrm{deg}$	120.8 (120.8)	121.3	121.2	121.3	122.1
$\alpha(\mathrm{H} 2 \mathrm{C} 1 \mathrm{C} 2) / \mathrm{deg}$	121.5 (121.5)	121.1	120.2	121.1	120.8
$\alpha(\mathrm{H} 3 \mathrm{C} 2 \mathrm{C} 1) / \mathrm{deg}$	119.8 (119.8)	117.0	119.3	116.6	118.2
τ (C1C2C3C4)/deg	180.0 (180.0)	101.7	90.0	35.5	0.0
τ (H1C1C2C3)/deg	0.0 (0.0)	-0.5	0.0	2.1	0.0
$\tau(\mathrm{H} 2 \mathrm{C} 1 \mathrm{C} 2 \mathrm{C} 3) / \mathrm{deg}$	180.0 (180.0)	179.8	180.0	181.3	180.0
$\tau(\mathrm{H} 3 \mathrm{C} 2 \mathrm{C} 3 \mathrm{H} 4) / \mathrm{deg}$	180.0 (180.0)	-79.1		-145.7	0.0

${ }^{a}$ Dihedral angles (τ) are as normally defined and used in the calculation. ${ }^{b}$ T.S. stands for transition state. ${ }^{c}$ The dihedral angles involving CH bonds were constrained to planar values with 0.0° or 180.0° in this calculation. These torsion angles were relaxed in the calculation of the 102° transition state and were found to be little different from the planar values. ${ }^{d}$ Values in parentheses include a CCSDT(Q)(FC)/cc-pVDZ correction.

Figure 2. Schematic for the trans rotamer of butadiene showing the numbering of atoms.
π-electron delocalization. The lengths of the two $\mathrm{C}=\mathrm{C}$ double bonds in the trans and cis rotamers are comparable, indicative of significant π-electron delocalization in both. However, the $\mathrm{C}-\mathrm{C}$ bond in the cis rotamer is considerably longer than in the trans rotamer. Thus, it seems that the $\mathrm{C}-\mathrm{C}$ bond in the cis rotamer must be lengthened in response to repulsion of the H 1 and H 5 hydrogen atoms rather than because of the absence of π-electron delocalization. The significant increase in the C 1 C 2 C 3 bond angle in the cis rotamer also reflects the H1H5 repulsion. The pattern in CH bond lengths and bond angles seen in the trans rotamer is essentially preserved in the other rotamers with the exception of the shortening of the C 2 H 3 and C 3 H 4 bonds and the increase in the C 1 C 2 H 3 and C 4 C 3 H 4 bond angles in the cis rotamer. The $\mathrm{C}-\mathrm{C}$ bond length in the gauche rotamer is closer to that of the cis rotamer than the trans rotamer. Supporting Information Tables S1-S5 supply the current Cartesian coordinates for the five rotamers.

The leftmost column in Table 4 gives new predictions of the harmonic vibrational frequencies of the gauche rotamer obtained at the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ level of theory. Earlier predictions for the gauche rotamer were made by De Maré et al. ${ }^{22}$ by transferring to the gauche rotamer scale factors for internal coordinate force constants fitted to the experimental data for the trans rotamer. ${ }^{50,51}$ Their predictions, which are listed in Table 6 , include the effects of anharmonicity and are thus not directly comparable to the harmonic frequencies in Table 4. DFT Raman activities and infrared intensities were obtained from B3LYP/ aug-cc-pVTZ calculations using the G03 program. ${ }^{25}$ The corresponding B3LYP harmonic frequencies are in column two in Table 4. The DFT set of frequencies is generally larger than the first set and differ more than might be expected. The torsion angle (relative to the cis rotamer) of only 32.6° in the DFT calculation compared to 36.1° in the $\operatorname{CCSD}(\mathrm{T})$ structure undoubtedly causes the difference in frequencies, which are all larger except in the CH stretching region.
B3LYP and $\operatorname{CCSD}(\mathrm{T})$ harmonic frequencies for the trans conformer obtained with the aug-cc-pVDZ and aug-cc-pVTZ basis sets are compared in Table 5 in order to illustrate the

TABLE 4: Theoretical Harmonic Vibration Frequencies $\left(\mathrm{cm}^{-1}\right)$, Raman Activities (\AA^{4} / \mathbf{u}) and IR Intensities ($\mathbf{k m} / \mathrm{mol}$) for the gauche Rotamer of Butadiene

sym	freq.	CCSD $(\mathrm{T})^{a}$	B3LYP b	Raman activity b	IR intensity b
a	ω_{1}	3233.4	3221.0	138.7	5.2
	ω_{2}	3155.7	3142.1	301.5	0.45
	ω_{3}	3134.2	3132.7	30.7	25.6
	ω_{4}	1655.6	1670.4	212.0	2.6
	ω_{5}	1452.8	1469.1	35.8	9.5
	ω_{6}	1317.1	1347.2	32.0	0.037
	ω_{7}	1049.7	1070.7	2.7	0.012
	ω_{8}	971.2	1022.1	18.5	1.9
	ω_{9}	908.2	952.5	7.3	6.6
	ω_{10}	880.3	884.9	4.2	0.64
	ω_{11}	723.7	759.2	1.7	3.1
	ω_{12}	264.9	275.0	9.3	0.008
	ω_{13}	158.1	161.0	2.9	0.29
b	ω_{14}	3231.9	3219.3	5.0	14.9
	ω_{15}	3142.3	3136.9	15.1	4.2
	ω_{16}	3132.3	3121.8	58.7	7.7
	ω_{17}	1653.5	1693.2	2.9	7.5
	ω_{18}	1420.0	1444.8	6.3	1.9
	ω_{19}	1287.2	1315.9	15.7	0.28
	ω_{20}	1084.5	1111.3	4.0	4.5
	ω_{21}	991.6	1035.4	0.59	27.1
	ω_{22}	912.2	954.7	1.2	76.0
	ω_{23}	604.3	621.2	0.25	9.5
	ω_{24}	453.0	474.9	0.61	15.2

${ }^{a} \operatorname{CCSD}(\mathrm{~T}) /$ aug-cc-pVDZ. Torsion angle $=36.1^{\circ} .{ }^{b}$ B3LYP/ aug-cc-pVTZ. Torsion angle $=32.6^{\circ}$.
sensitivity of the values to the quality of the basis set. Although DFT in general converges more rapidly with respect to improvements in the basis set, for this particular collection of frequencies the total variation in the $\operatorname{CCSD}(\mathrm{T})$ frequencies as a function of the basis set size was slightly less than the variation observed for B3LYP. Studies comparing CCSD(T)-based frequencies with experimental values in diatomic molecules lead us to expect that this level of theory should ultimately be capable of achieving very high accuracy and excellent agreement with experiment. ${ }^{36}$ Achieving this level of accuracy would require the same sequence of steps used in determining the structures, i.e. frozen core calculations with large basis sets corrected for core/valence and scalar relativistic effects and possibly for higher order correlation effects. Frequency evaluations at that level are currently intractable with present day software and hardware for a molecule the size of butadiene. For example, the $\operatorname{CCSD}(\mathrm{T}) /$

TABLE 5: Comparison of B3LYP and CCSD(T) Harmonic Frequencies (cm^{-1}) and Zero Point Vibrational Energies ($\mathrm{kJ} / \mathrm{mol}$) for s-trans-1,3-Butadiene

sym.	aug-cc-pVDZ		aug-cc-pVTZ	
	B3LYP	$\operatorname{CCSD}(\mathrm{T})$	B3LYP	$\operatorname{CCSD}(\mathrm{T})$
a_{u}	180.9	169.2	174.5	157.5
b_{u}	300.9	289.5	299.7	285.8
ag_{g}	518.1	505.1	519.4	505.8
$\mathrm{a}_{\text {u }}$	537.8	524.9	538.5	524.1
b_{g}	778.1	748.6	781.0	751.7
a_{g}	899.7	890.2	901.5	893.9
a_{u}	946.9	906.8	943.4	913.8
b_{g}	948.7	908.3	945.3	914.8
b_{g}	997.9	960.3	1002.0	964.7
$\mathrm{b}_{\text {u }}$	995.6	982.6	1007.2	989.6
a_{u}	1046.2	1014.1	1056.6	1027.3
a_{g}	1222.8	1212.6	1229.0	1219.4
a_{g}	1307.7	1293.5	1317.5	1304.3
b_{u}	1312.1	1297.7	1324.1	1307.3
b_{u}	1404.1	1394.5	1419.6	1406.4
ag_{g}	1464.2	1461.6	1479.5	1472.0
$\mathrm{b}_{\text {u }}$	1647.9	1618.3	1651.2	1628.7
ag_{g}	1703.4	1681.3	1702.1	1689.5
a_{g}	3137.3	3132.8	3124.7	3133.7
$\mathrm{b}_{\text {u }}$	3142.1	3134.3	3134.6	3136.3
ag_{g}	3146.5	3146.1	3137.3	3144.1
$\mathrm{b}_{\text {u }}$	3151.5	3152.0	3137.4	3148.6
a_{g}	3236.5	3233.8	3220.8	3230.8
b_{u}	3236.9	3234.2	3221.1	3231.1
ZPE	222.9	220.7	222.9	221.2

aug-cc-pVTZ normal mode calculation on s-trans-1,3-butadiene required 27 days on two Opteron cores.

Despite the differences in the B3LYP and $\operatorname{CCSD}(\mathrm{T})$ frequencies, the predictions of Raman activities and infrared intensities in the DFT calculation (Table 4) are regarded as qualitatively useful. These predictions lead to a revised interpretation of the assignments for the gauche rotamer in the gas phase Raman spectrum made by Engeln et al. ${ }^{13}$ A keystone in their interpretation was assigning a feature at $269.9 \mathrm{~cm}^{-1}$ as the $2-0$ transition of ν_{13} for the gauche rotamer. We now suggest this feature is the v_{12} fundamental of the gauche rotamer, which has a predicted frequency of $\sim 265 \mathrm{~cm}^{-1}$ and a predicted Raman activity of 9.3 \AA^{4} / u. The overtone of v_{13}, the torsional mode at about $285 \mathrm{~cm}^{-1}$ would have a very small Raman activity unless it gains intensity by Fermi resonance with v_{12}. Engeln et al. expressed concern about the anomalously high intensity of the feature at 269.9 cm^{-1}, assigned to the overtone of the torsion. ${ }^{13}$ Even if $2 v_{13}$ gains intensity by Fermi resonance, this band would be less intense than ν_{12}. We conclude that the gas-phase Raman spectrum of butadiene needs to be reevaluated.

The small energy difference between the gauche rotamer and the cis transition state supports the expectation that tunneling through the barrier between the two gauche rotamers will be a signature feature of the rotational spectrum of the gauche rotamer. Thus, tunneling splitting will significantly influence the frequencies of the rotational transitions.

In previous sections, our discussion referred to harmonic frequencies obtained from a variety of theoretical methods. On current computer hardware, harmonic frequencies can be readily obtained from applications such as G03 ${ }^{25}$ and MOLPRO, ${ }^{42}$ although large basis set $\operatorname{CCSD}(\mathrm{T})(\mathrm{FC})$ normal mode calculations are quite time-consuming, even for as small a molecule as butadiene. Until recently, theoretical reports of anharmonic fundamental frequencies were largely limited to molecules with six or fewer atoms where it was possible to construct complete

TABLE 6: Comparison of Anharmonic CCSD(T)(FC) and Experimental Fundamental Frequencies $\left(\mathrm{cm}^{-1}\right)$ for s-trans-1,3-Butadiene and gauche-1,3-Butadiene ${ }^{a}$

s-trans-1,3-Butadiene						
sym.	aug-cc-pVDZ	aug-cc-pVTZ	aVTZ CV b	PD scaled c	expt. d	
a_{u}	157.9	163.1	163.5	159	162.2	
$\mathrm{~b}_{\mathrm{u}}$	291.1	301.3	301.2	295	299	
a_{g}	502.4	516.7	517.3	510	513	
a_{u}	507.2	520.8	520.8	518	524.6	
$\mathrm{~b}_{\mathrm{g}}$	724.7	757.0	758.4	747	749	
a_{g}	876.4	887.7	889.9	879	889	
a_{u}	876.3	912.9	914.4	907	908.1	
$\mathrm{~b}_{\mathrm{g}}$	879.0	916.0	917.5	908	908	
$\mathrm{~b}_{\mathrm{g}}$	929.9	971.6	973.1	964	966	
$\mathrm{~b}_{\mathrm{u}}$	970.3	994.9	995.4	996	990	
a_{u}	982.6	1025.1	1026.4	1022	1013.8	
a_{g}	1188.0	1204.4	1205.7	1209	1204	
a_{g}	1273.7	1297.7	1298.4	1287	1285	
$\mathrm{~b}_{\mathrm{u}}$	1272.2	1298.6	1299.4	1290	1281	
$\mathrm{~b}_{\mathrm{u}}$	1360.1	1385.2	1386.5	1380	1380.6	
a_{g}	1420.9	1438.8	1439.6	1443	1442	
$\mathrm{~b}_{\mathrm{u}}$	1576.1	1609.3	1611.9	1591	1596.5	
a_{g}	1633.9	1654.7	1657.8	1652	1644	
a_{g}	2978.7	2970.6	2977.5	3008	3012	
$\mathrm{~b}_{\mathrm{u}}$	3012.0	3012.3	3019.3	3015	3011.4	
a_{g}	2999.3	2990.5	2997.3	3024	$3025 e$	
$\mathrm{~b}_{\mathrm{u}}$	3011.5	2996.9	3003.6	3024	3026	
a_{g}	3087.9	3074.9	3082.2	3111	3100	
$\mathrm{~b}_{\mathrm{u}}$	3088.2	3075.1	3082.4	3111	3099.7	
$\epsilon_{\text {rms }}$	20.7	16.4	14.1	5.8		

gauche-1,3-Butadiene

sym.	aug-cc-pVDZ	aVDZ + CV	PD scaled c	expt.
a	140.9	142.8	186	136^{f}
a	262.5	263.6	274	NA
b	445.9	446.9	457	470^{g}
b	595.2	596.4	616	596^{g}
a	707.6	709.1	735	70^{g}
a	861.8	863.5	866	NA
a	887.8	890.5	918	90^{g}
b	889.4	891.8	919	914^{g}
a	949.0	950.6	984	984^{g}
b	970.4	971.7	1004	996^{g}
a	1033.2	1034.5	1052	1034^{h}
b	1064.8	1065.7	1093	1087^{f}
b	1260.4	1261.3	1274	NA
a	1284.2	1285.1	1306	NA
b	1380.9	1381.8	1403	1403^{g}
a	1405.1	1408.5	1433	1425^{g}
a	1602.5	1605.2	1619	1612^{i}
b	1610.3	1613.0	1628	1633^{g}
b	3020.3	3026.3	3025	3010^{g}
a	3017.4	3023.3	3030	299^{g}
b	2998.3	3004.4	3114	300^{g}
a	3013.4	3019.4	3025	$302^{g} 3^{g}$
b	3085.5	309.7	3112	3103^{g}
a	3086.8	3092.9	3018	3035^{g}
$\epsilon_{\text {rms }}$	28.7	27.9	20.3	

[^1]quartic (or better) force fields. ${ }^{52,53}$ Results from an alternative approach which exploits the different rates of convergence of the harmonic frequencies and the anharmonic corrections has recently been reported. ${ }^{36}$ This approach combines $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVnZ ($n=\mathrm{D}, \mathrm{T}$, or Q) harmonic frequencies with DFT or MP2 anharmonic corrections determined with the smaller basis sets. Although the number of critical evaluations of the combination approach is still limited, the available comparisons with quartic force field or well-established experimental fundamentals suggest that the technique can achieve accurate results at greatly reduced computational expense.

The three fundamentals in $\mathrm{H}_{2} \mathrm{O}$ were chosen as a test case to explore the capabilities and limitations of this approach. $\operatorname{CCSD}(\mathrm{T})(\mathrm{FC})$ harmonic frequencies were obtained from basis sets up through aug-cc-pV6Z. ${ }^{54} \mathrm{CV}$ corrections to the harmonic frequencies were determined from weighted core/valence basis sets up through cc-pwCV5Z. The scalar relativistic corrections for the harmonic frequencies were based on $\operatorname{CCSD}(\mathrm{T})$-DK/ccpVTZ_DK calculations. Higher order correlation effects on the harmonic frequencies were obtained from CCSDTQ(FC)/ccpVDZ calculations. Very few CCSDTQ frequencies for polyatomic molecules have been reported due to their high computational cost. In the case of $\mathrm{H}_{2} \mathrm{O}$, higher order correlation effects shift the $\operatorname{CCSD}(\mathrm{T})$ harmonic frequencies by $\pm 6 \mathrm{~cm}^{-1}$ or less. Anharmonic corrections were evaluated at the MP2(FC)/ aug-cc-pVnZ, $n=\mathrm{D}, \mathrm{T}, \mathrm{Q}$ levels of theory. The largest of these basis sets yielded the following fundamentals, with corresponding experimental ${ }^{55}$ values in parentheses, $v_{1}\left(\mathrm{a}_{1}\right)=3663$ (3657), $v_{2}\left(\mathrm{a}_{1}\right)=1603$ (1595) and $\nu_{3}\left(\mathrm{~b}_{2}\right)=3759$ (3756) cm^{-1}. By extrapolating the $\operatorname{CCSD}(\mathrm{T})$ frozen core and core/valence components to the complete basis set limit and increasing the CCSDTQ basis set to aug-cc-pVDZ quality, near perfect agreement with experiment is possible. However, such extensive calculations are well beyond what is affordable for butadiene. If the water basis sets are reduced to a size that is practical for butadiene, namely aug-cc-pVTZ for the $\operatorname{CCSD}(\mathrm{T})$ harmonic frequencies, cc-pwCVDZ for the CV corrections and aug-ccpVDZ for the MP2 anharmonic corrections, the resulting fundamentals are in only slightly poorer agreement with experiment: $v_{1}\left(\mathrm{a}_{1}\right)=3625$ (3657), $v_{2}\left(\mathrm{a}_{1}\right)=1596$ (1595) and $v_{3}\left(\mathrm{~b}_{2}\right)=3722(3756) \mathrm{cm}^{-1}$.
$\operatorname{CCSD}(\mathrm{T})$ theoretical values for the anharmonic frequencies of trans and gauche butadiene are compared in Table 6 with the available experimental values. The anharmonic frequency corrections obtained from G03 are weakly dependent on the choice of the axis system. All of the anharmonic calculations performed as part of the present work were carried out in the principal axis system (PAS). In the case of trans-butadiene, the PAS differs from the G03 default choice of axis system by 23°. At the MP2(FC)/aug-cc-pVDZ level of theory, the largest difference in anharmonic corrections observed between values based on the G03 default axis system and those based on the PAS was only $0.9 \mathrm{~cm}^{-1}$. Larger differences may be observed at other levels of theory. For example, differences as large as $10 \mathrm{~cm}^{-1}$ were found with B3LYP/cc-pVTZ and differences of up to $8 \mathrm{~cm}^{-1}$ were found in the gauche conformer. In addition to the choice of axis system, the details of how G03 treats Fermi resonances has changed with various versions of the code. The present results were obtained with the C. 02 version.

The small rms error shown in Table 6 for the Panchenko and DeMaré ${ }^{51}$ trans rotamer frequencies reflects the effects of multiple empirically adjusted scale factors for the theoretical internal-coordinate force constants. These scale factors, which were obtained by fitting to the observed trans frequencies, were
then applied to the theoretical force constants used to derive the gauche anharmonic frequencies. In part, the increase in the $\operatorname{CCSD}(\mathrm{T})$ and "PD Scaled" rms errors for the gauche structure is thought to result from comparing theoretical gas phase frequencies with experimental matrix isolation values. In the case of the "PD Scaled" values, the adoption of the trans scaling factors is also a contributor.

For the trans rotamer, the level of agreement between theory and experiment ${ }^{50}$ is quite good (see Table 6). Increasing the basis set from aug-cc-pVDZ to aug-cc-pVTZ decreases the root-mean-square (rms) deviation by $4.3 \mathrm{~cm}^{-1}(\sim 20 \%)$. A further increase in the size of the basis set, to aug-cc-pVQZ, proved intractable with our current resources. Nonetheless, tests on prototype hydrocarbons such as ethylene and ethane suggest that the use of the larger aug-cc-pVQZ basis set would produce a further small reduction in the rms error as a result of increases in the high frequency stretching modes above $3000 \mathrm{~cm}^{-1}$. All results in Table 6 are based on MP2(FC)/aug-cc-pVDZ anharmonic corrections. Tests on ethylene and ethane also indicated that improving the basis set used for the anharmonic correction from aug-cc-pVDZ to aug-cc-pVTZ would result in additional small increases in the high frequency stretches, but such calculations were prohibitively expensive for butadiene.

As seen in Table 6, core/valence corrections to the harmonic frequencies at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pw} \operatorname{CVDZ}$ level of theory further reduces the rms deviation to $14.1 \mathrm{~cm}^{-1}$ for the trans conformer. A scale factor of 1.39 was applied to the anharmonic corrections for frequencies above $3000 \mathrm{~cm}^{-1}$ based on cc-pwCVTZ calculations conducted on ethylene and ethane. Scalar relativistic corrections to the harmonic frequencies of ethylene averaged less than $0.2 \mathrm{~cm}^{-1}$ and, therefore, were expected to be unimportant for small hydrocarbons such as butadiene.

Due to the lower C_{2} symmetry and greater cost of obtaining harmonic frequencies in the gauche conformer, we were unable to perform a $\operatorname{CCSD}(\mathrm{T})$ normal-mode analysis with the aug-ccpVTZ basis set. Nonetheless, the CV-corrected values are still in reasonable agreement with the available matrix-isolation fundamentals for that conformer, ${ }^{11,32,33}$ with an rms deviation of $28 \mathrm{~cm}^{-1}$.

In conclusion, we believe the present structures and relative energies of the butadiene rotamers to be the most accurate theoretical values reported, to date. Furthermore, based on their ability to reproduce the available experimental data for the wellcharacterized trans rotamer, we expect our predictions for the other stationary points to be similarly reliable and thus should guide the search for improved experimental data. The predictions of frequencies for the gauche rotamer should also guide the search for this rotamer in gas-phase spectra.

Acknowledgment. The calculations were done on the Beowulf cluster at Oberlin College, which is supported by NSF Grant 0420717. N.C.C was supported by a Dreyfus Senior Scholar mentor grant. We thank Dr. Alfred Karpfen for helpful information about his work on the butadiene torsional potential.

Supporting Information Available: Tables S1-S5 supplying the current Cartesian coordinates for the five rotamers. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Almenningen, A.; Traetteburg, M. Acta Chem. Scand. 1958, 12, 1221.
(2) Kuchitsu, K.; Fukuyama, T.; Morimo, Y. J. Mol. Struct. 1968, 1 , 463.
(3) Craig, N. C.; Groner, P.; McKean, D. C. J. Phys. Chem. A 2006, 110, 7461.
(4) Radom, L.; Pople, J. A. J. Am. Chem. Soc. 1970, 92, 4786.
(5) Skaarup, S.; Boggs, J. E.; Skancke, P. N. Tetrahedron 1976, 32, 1179.
(6) De Maré, G. R. J. Mol. Struct. THEOCHEM 1984, 109, 103.
(7) Breulet, J.; Lee, T. J.; Schaefer, H. F., III J. Am. Chem. Soc. 1984, 106, 6250.
(8) Feller, D.; Davidson, E. R. Theor. Chim. Acta 1985, 68, 57.
(9) Wiberg, K. B.; Rosenberg, R. E. J. Am. Chem. Soc. 1990, 112, 1509.
(10) Guo, H.; Karplus, M. J. Chem. Phys. 1991, 94, 3679.
(11) Carriera, L. A. J. Phys. Chem. 1975, 62, 3851.
(12) Durig, J. R.; Busy, W. E.; Cole, A. R. H Can. J. Phys. 1975, 53, 1832.
(13) Engeln, R.; Consalvo, D.; Reuss, J. Chem. Phys. 1992, 160, 427.
(14) Murcko, M. A.; Castejon, H.; Wiberg, K. B. J. Phys. Chem. 1996, 100, 16162.
(15) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.
(16) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A., Jr J. Chem. Phys. 1996, 104, 2598.
(17) Sancho-García, J. C.; Pérez-Jiménez, A. J.; Pérez-Jorda, J. M.; Moscardó, F. Mol. Phys. 2001, 99, 47.
(18) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
(19) Karpfen, A.; Parasuk, V. Mol. Phys. 2004, 102, 819.
(20) Lide, D. R., Jr. J. Chem. Phys. 1962, 37, 2074.
(21) Caminati, W.; Grassi, G.; Bauder, A. Chem. Phys. Lett. 1988, 148, 13.
(22) De Maré, G. R.; Panchenko, Y. N.; Vander Auwera, J. J. Phys. Chem. A 1997, 101, 3998.
(23) Craig, N. C.; Sams, R. L. J. Phys. Chem. A 2008, 112, 1263712646.
(24) Saltiel, J.; Sears, D. F., Jr.; Turek, A. J. Phys. Chem. A 2001, 105, 7569.
(25) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji H. H., M., Ehara M. Toyota, K., Fukuda R. Hasegawa, J. Ishida, M. Nakajima, T. Honda, Y. Kitao, O. Nakai, H. Klene, M. Li, X. Knox J. E. Hratchian, H. P., Cross J. B. Bakken, V. Adamo, C. Jaramillo, J. Gomperts, R. Stratmann, R. E. Yazyev, O., Austin, A. J. Cammi, R. Pomelli, C. Ochterski, J. W. Ayala, P. Y. Morokuma, K. Voth, G. A. Salvador, P. Dannenberg, J. J. Zakrzewski, V. G. Dapprich, S. Daniels, A. D. Strain M. C., Farkas, O. Malick, D. K. Rabuck, A. D. Raghavachari, K. Foresman, J. B. Ortiz, J. V. Cui, Q. Baboul, A. G. Clifford, S. Cioslowski, J. Stefanov, B. B. Liu, G. Liashenko, A. Piskorz, P. Komaromi, I. Martin, R. L. Fox, D. J. Keith, T. Al-Laham, M. A. Peng, C. Y. Nanayakkara, A. Challacombe, M. Gill, P. M. W. Johnson, B. Chen, W. Wong, M. W. Gonzalez, C. and Pople J. A. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford CT, 2004, 2004.
(26) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(27) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(28) Squillacote, M. E.; Sheridan, R. S.; Chapman, O. L.; Anet, F. A. L. J. Am. Chem. Soc. 1979, 101, 3657.
(29) Huber-Wälchli, P.; Günthard, H. H. Spectrochim. Acta 1981, 37A, 285.
(30) Furukawa, Y.; Takeuchi, H.; Harada, I.; Tasumi, M. Bull. Chem. Soc. Jpn. 1983, 56, 392.
(31) Fisher, J. J.; Michl, J. J. Am. Chem. Soc. 1987, 109, 1056.
(32) Arnold, B. R.; Balaji, V.; Michl, J. J. Am. Chem. Soc. 1990, 112, 1808.
(33) Choi, C. H.; Kertesz, M.; Dobrin, S.; Mich1, J. Theor. Chem. Acc. 1999, 102, 196.
(34) Arnold, B. R.; Balaji, V.; Downing, J. W.; Radziszewski, J. G.; Fisher, J. J.; Michl, J. J. Am. Chem. Soc. 1991, 113, 2910.
(35) Feller, D.; Craig, N. C.; Matlin, A. R. J. Phys. Chem. A 2008, 112, 2131.
(36) Feller, D.; Peterson, K. A.; Dixon, D. A. J. Chem. Phys. 2008, 129, 204105-204137.
(37) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
(38) Peterson, K. A.; Dunning, T. H., Jr. J. Chem. Phys. 2002, 117, 10548.
(39) Douglas, M.; Kroll, N. M. Ann. Phys. (New York) 1974, 82, 89. (40) Jansen, G.; Hess, B. A. Phys. Rev. A 1989, 39, 6016.
(41) de Jong, W. A.; Harrison, R. J.; Dixon, D. A. J. Chem. Phys. 2001, 114, 48.
(42) Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Schütz, M.; Celani, P.; Korona, T.; Rauhut, G.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.; Hetzer, G.; Lloyd, A. W.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklass, A.; Palmieri, P.; Pitzer, R.; Schumann, U.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; http://www.molpro.net. MOLPRO 2006.1, a package of ab initio programs ; Universität Stüttgart: Stüttgart, Germany, and Cardiff University: Cardiff, U.K., 2006.
(43) Kucharski, S. A.; Watts, J. D.; Bartlett, R. J. Chem. Phys. Lett. 1999, 302, 295.
(44) Kucharski, S. A.; Kolaski, M.; Bartlett, R. J. J. Chem. Phys. 2001, 114, 692.
(45) Ruden, T. A.; Helgaker, T.; Jørgensen, P.; Olsen, J. J. Chem. Phys. 2004, 121, 5874.
(46) Heckert, M.; Kállay, M.; Gauss, J. Mol. Phys. 2005, 103, 2109.
(47) Kállay, M. MRCC, a string-based quantum chemical program suite; Budapest University of Technology and Economics: Budapest, 2001.
(48) Kállay, M.; Surján, P. R. J. Chem. Phys. 2001, 115, 2945.
(49) Goodson, D. Z. J. Chem. Phys. 2002, 116, 6948.
(50) McKean, D. C.; Craig, N. C.; Panchenko, Y. N. J. Phys. Chem. A 2006, 110, 8044.
(51) Panchenko, Y. N.; De Maré, G. R. J. Mol. Struct. 2008, 49, 235. (52) Martin, J. M. L.; Lee, T. J.; Taylor, P. R. J. Chem. Phys. 1998, 108, 676.
(53) Peterson, K. A.; Mitrushchenkov, A.; Francisco, J. S. Chem. Phys. 2008, 346, 34.
(54) Wilson, A. K.; van Mourik, T.; Dunning, T. H., Jr J. Mol. Struct. (Theochem) 1996, 388, 339.
(55) Shimanouchi, T. Tables of Molecular Vibrational Frequencies Consolidated; National Bureau of Standards: Washington, D.C., 1972; Vol. I.
(56) Langhoff, S. R.; Davidson, E. R Int. J. Quantum Chem. 1974, 8, 61.

JP8095709

[^0]: * Corresponding author. E-mail: dfeller@owt.com.
 ${ }^{\dagger}$ Department of Chemistry, Washington State University.
 ${ }^{\ddagger}$ Department of Chemistry and Biochemistry, Oberlin College.

[^1]: ${ }^{a}$ Anharmonic corrections were computed at the MP2(FC)/ aug-cc-pVDZ level of theory. ${ }^{b}$ Based on $\operatorname{CCSD}(\mathrm{T})(\mathrm{FC}) /$ aug-cc-pVTZ + a scaled core/valence correction obtained from $\operatorname{CCSD}(\mathrm{T})(\mathrm{CV}) / \mathrm{cc}-\mathrm{pw} C V D Z$ calculations. ${ }^{c}$ Panchenko and DeMaré MP2 values based on 8 scaling factors. ${ }^{51}{ }^{d}$ Gas phase values reported by McKean et al. (unless otherwise noted). ${ }^{50}$ ${ }^{e}$ Furukawa et al..$^{30} f$ Gas phase value taken from Carriera. ${ }^{11} g$ Low temperature argon matrix IR taken from Arnold et al. ${ }^{32}{ }^{h}$ Argon matrix Raman taken from Choi et al. ${ }^{33}{ }^{i}$ This value was reported by Arnold et al. as $1602 \mathrm{~cm}^{-1}$, but that value is a misprint.

